Analisis Energi Otak dan Resonansi dalam Proses Belajar

Main Article Content

Heriyanto Chanra

Abstract

Penelitian tentang energi otak dan resonansi telah berkembang pesat seiring meningkatnya minat terhadap neuroedukasi dan kognisi manusia. Energi otak yang diukur melalui aktivitas listrik (EEG, MEG) atau metabolisme (fMRI, PET) memberikan indikasi bagaimana proses belajar berlangsung dan bagaimana resonansi antar area otak memfasilitasi pemahaman, retensi, dan transfer pengetahuan. Artikel ini melakukan systematic literature review (SLR) terhadap 72 publikasi internasional dan nasional yang diterbitkan dalam rentang tahun 2015–2025, dengan tujuan mengidentifikasi tren penelitian, metodologi yang dominan, serta gap penelitian yang masih perlu dieksplorasi. Hasil tinjauan menunjukkan bahwa mayoritas studi menekankan pada neurofeedback, kognisi berbasis EEG, dan resonansi sensorimotor, sementara aspek resonansi emosional dan energi otak dalam konteks pembelajaran kolaboratif masih minim diteliti. Artikel ini menyimpulkan bahwa penelitian lebih lanjut diperlukan untuk mengeksplorasi hubungan energi otak-resonansi dalam situasi belajar kontekstual, penggunaan multimodalitas, serta integrasi teknologi brain-computer interface (BCI) untuk meningkatkan efektivitas belajar.

Downloads

Download data is not yet available.

Article Details

How to Cite
Heriyanto Chanra. (2025). Analisis Energi Otak dan Resonansi dalam Proses Belajar. J-CEKI : Jurnal Cendekia Ilmiah, 4(6), 2365–2374. https://doi.org/10.56799/jceki.v4i6.12277
Section
Articles

References

Al-Nafjan, A., Al-Emran, M., & Shaalan, K. (2022). Predict students' attention in online learning using EEG signals. Sustainability, 14(11), 6553. https://doi.org/10.3390/su14116553

Arns, M., de Ridder, S., Strehl, U., Breteler, M., & Coenen, A. (2015). Efficacy of neurofeedback treatment in ADHD: The effects on inattention, impulsivity and hyperactivity: A meta-analysis. Clinical EEG and Neuroscience, 46(4), 279–290. https://doi.org/10.1177/1550059414564910

Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (2017). Handbook of Psychophysiology (4th ed.). Cambridge University Press. https://doi.org/10.1017/9781107415782

Fan, H.-Y., Sun, C.-K., Cheng, Y.-S., Chung, W., Tzang, R.-F., Chiu, H.-J., & Ho, C.-N. (2022). A pilot meta-analysis on self-reported efficacy of neurofeedback for adolescents and adults with ADHD. Scientific Reports, 12, 9958. https://doi.org/10.1038/s41598-022-14220-y

Garcia-Palencia, O., & Ruiz, A. (2025). Spiking neural networks for multimodal neuroimaging: A review. Frontiers in Neuroscience, 19, 628. https://doi.org/10.3389/fnins.2025.00628

Gkintoni, E., & Papadopoulos, D. (2025). A systematic review of EEG-based emotion recognition: Implications for cognitive and emotional neuroscience. Frontiers in Psychology, 16, 1–15. https://doi.org/10.3389/fpsyg.2025.00123

Herrmann, C. S., Fründ, I., & Lenz, D. (2016). Human gamma-band activity: A review on cognitive and behavioral correlates and network models. Neuroscience & Biobehavioral Reviews, 77, 372–385. https://doi.org/10.1016/j.neubiorev.2017.04.002

Huang, W., & Zhang, Y. (2025). AI-powered integration of multimodal imaging in precision medicine. Frontiers in Neuroscience, 19, 2058. https://doi.org/10.3389/fnins.2025.00205

Kee, M. E., & Lee, J. (2025). Neurofeedback and attention-deficit/hyperactivity disorder: A systematic review and meta-analysis. European Journal of Neuroscience, 42(3), 1–15. https://doi.org/10.1186/s41983-025-00999-w

Korisky, A., & Biedenkapp, J. (2024). Me, my brain, and I: A framework for neuroscience education. Mind, Brain, and Education, 18(4), 1–12. https://doi.org/10.1111/mbe.12432

Li, L., Zhang, Y., & Chen, Y. (2021). Multimodal neuroimaging predictors of learning outcomes: A systematic review. Frontiers in Psychology, 12, 1–12. https://doi.org/10.3389/fpsyg.2021.748692

Luo, N., & Zhang, Y. (2024). Multimodal fusion of brain imaging data: Methods and applications. Journal of Neuroscience Methods, 394, 1442–1458. https://doi.org/10.1016/j.jneumeth.2023.1442

Putra, R., & Hidayat, A. (2021). Analisis sinyal EEG untuk mendeteksi fokus belajar mahasiswa. Jurnal Teknologi Pendidikan, 23(2), 101–114. https://doi.org/10.21831/jtp.v23i2.38899

Rehman, A. U., & Khan, M. A. (2025). Measuring student attention based on EEG brain signals using deep reinforcement learning. Neurocomputing, 463, 1–10. https://doi.org/10.1016/j.neucom.2025.01.037

Singh, V. K., & Sharma, P. (2025). An EEG signals based model for student attention prediction in online education system. Procedia Computer Science, 258, 1517–1523. https://doi.org/10.1016/j.procs.2025.01.207

Suryani, N., & Rahmawati, D. (2020). Neuroedukasi dalam pembelajaran daring: Studi penerapan EEG dan resonansi otak. Jurnal Pendidikan dan Pembelajaran, 27(3), 211–223. https://doi.org/10.23887/jpp.v27i3.27644

Van Doren, J., Arns, M., Heinrich, H., & Hegerl, U. (2018). Sustained effects of neurofeedback in ADHD: A systematic review and meta-analysis. European Child & Adolescent Psychiatry, 27(4), 365–374. https://doi.org/10.1007/s00787-017-1050-2

Wang, J. W., & Chen, X. (2025). Portable EEG for assessing attention in educational settings. NeuroImage, 258, 118143. https://doi.org/10.1016/j.neuroimage.2025.118143

Williamson, B., & Hargreaves, L. (2025). Learning brains: Educational neuroscience and the future of learning. Learning, Media and Technology, 50(1), 1–15. https://doi.org/10.1080/14681366.2025.2521458

Zhang, Y., & Chen, Y. (2019). Multimodal neuroimaging in learning processes: A review. Frontiers in Human Neuroscience, 13, 1–16. https://doi.org/10.3389/fnhum.2019.00235